Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 15(7): e42283, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37609095

RESUMO

OBJECTIVES: Investigating haloperidol's cytogenetic behavior in cultured human T lymphocytes of patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). METHODS: Four haloperidol solutions were added in cultures of peripheral blood lymphocytes of healthy individuals, SLE, and RA patients. After 72 hours of incubation, the cultured lymphocytes were plated on glass slides, and stained with the fluorescence plus Giemsa method, and sister chromatid exchanges (SCEs), proliferation rate index (PRI), and mitotic index (MI) were measured with the optical microscope. RESULTS: Result analysis revealed: (a) a statistically significant (p=0.001) dose-dependent increase of SCEs in SLE patients compared to healthy individuals; (b) a statistically significant (p=0.001) dose-dependent decrease of SCEs in RA patients for haloperidol concentrations 5, 10µg/mL; (c) a statistically significant (p=0.001) dose-dependent increase of SCEs in RA patients for haloperidol concentrations 20, 100µg/mL; and (d) a statistically significant (p=0.001) dose-dependent reduction of PRI and MI in both patient groups compared to healthy individuals. Furthermore, a correlation was observed between (a) SCE and PRI index variations, (b) MI and SCE index variations, and (c) PRI and MI index variations. CONCLUSIONS: Haloperidol affects T lymphocytes from SLE and RA patients by modifying DNA replication procedures, DNA damage response, and ferroptosis. Considering the wide use of haloperidol in neuropsychiatric symptoms of SLE and RA patients, further studies with more immune cell subsets are needed to evaluate its effects on human genetic material.

2.
Cureus ; 15(4): e37683, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37206523

RESUMO

OBJECTIVES: This study will investigate olanzapine's cytogenetic behavior in cultured human T lymphocytes in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). METHODS: Three olanzapine solutions were added in cultures of peripheral blood lymphocytes of healthy individuals, SLE, and RA patients. After 72 hours of incubation, the cultured lymphocytes were plated on glass slides and stained with the fluorescence plus Giemsa method. Sister chromatid exchanges (SCEs), proliferation rate index (PRI), and mitotic index (MI) were measured with the optical microscope. RESULTS: There was a statistically significant (p=0.001) dose-dependent increase of SCEs in SLE and RA patients compared to healthy individuals and a statistically significant (p=0.001) reduction of PRI and MI in the highest concentration in the SLE group. Moreover, Spearman's rank correlation coefficient was applied to calculate the correlation between SCEs, PRI, and MI. Negative significant correlations were noticed for both patient groups concerning SCEs-PRI alterations and SCEs-MI alterations. Conversely, positive correlations were noticed for both patient groups for PRI-MI alterations.  Conclusions: Olanzapine affects T lymphocytes from SLE and RA patients by modifying DNA replication procedures and DNA damage response. Considering the use of olanzapine in neuropsychiatric symptoms of SLE, further in vivo studies are necessary to evaluate its effect on human DNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...